THE LEVEL PAYMENT PROBLEM

1. Consider the recurrence

\[x_n = \begin{cases}
1.1x_{n-1} - 1000 & \text{if } n \geq 1 \\
12000 & \text{if } n = 0.
\end{cases} \]

Describe a situation this recurrence models. Use your axe to compute \(x_0 \) up to \(x_{50} \). Graph it and sketch the graph.

2. What happens to the recurrence if we let \(x_0 = 8000 \)?

3. If we allow \(x_0 \) to vary, what kinds of behaviour does the recurrence exhibit. Classify these behaviours with a simple rule. Show sample graphs. Can you choose \(x_0 \) so that the sequence remains constant? If so, explain, in common-sense terms, why this happens.

4. Let us suppose that \(x_0 \) is given, that \(a \) and \(b \) are constants, and that \(x_n = ax_{n-1} + b \). Write out the terms \(x_1 \) through \(x_5 \). Clean them up as best you can. Detect a pattern and write a formula for \(x_n \).

5. Write a recurrence for the following situation. A loan has an initial principal of \(P_0 \) and an interest rate of \(r \) per time period. An periodic payment of \(Q \) dollars is made starting with the first time period. Use the result of the last problem to write a formula for computing \(x_n \).